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Abstract. Quantization on phase spaces of general geometry devoid of any special symmetry
properties is discussed on the basis of phase spaces endowed with a symplectic structure, a
Riemannian geometry, and aSpinc structure. Using techniques from differential geometry, and
especially exploiting the Dirac operator, we are able to offer a fully geometric quantization
procedure for a wide class of symmetry free phase spaces. Our procedure leads to the
conventional results in cases where the phase space is a symmetric space for which alternative
quantization techniques suffice.

1. Introduction

Quantization, as originally conceived by Schrödinger for example, was limited in its
applicability to Euclidean phase spaces. The introduction of kinematical groups other than
the Heisenberg–Weyl group has been the key to extending quantization to a variety of
symmetric-space phase spaces, be it by coherent-state methods [1], Berezin quantization [2],
deformation quantization [3], techniques of Isham [4], or other closely related techniques.
Symmetric spaces possess a high degree of symmetry, and efforts to quantize systems on
phase spaces with more general geometry having little or no symmetry have been introduced
only recently [5–8]. All of the procedures mentioned rely, in one way or another, on adding
a Riemannian metric to the symplectic phase space of classical systems. Our previous work
[6] in this direction dealt with rather general spaces, but was confined to a two-dimensional
phase space, i.e. a single degree of freedom. In the present paper we add a further structure
to the space—namely aSpinc structure [9]—and show, for multidimensional phase spaces
that admit the required structures, how the process of quantization may be extended to cases
in which the phase space exhibits no symmetry whatsoever.

2. Geometry of classical systems

In this paper we restrict ourselves to a classical system with a phase spaceM being a 2n-
dimensional manifold (without a boundary). The kinematics is given by a non-degenerate
and closed two-form (symplectic form),�; d� = 0, which is globally defined onM while
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the dynamics is given in terms of a Hamiltonian functionh : M → R. The Hamiltonian
equations of motion can be written as

dx

dt
= �−1 dh (2.1)

or in local coordinates

�µνẋ
ν = ∂µh. (2.2)

The Darboux theorem states that for anyx ∈ M there exists a local coordinate system
(qj , pj ; j = 1, . . . , n) such that� = ∑

dqj ∧ dpj . Therefore in this coordinate system
equations (2.1) and (2.2) take the standard form

q̇j = ∂h

∂pj
ṗj = − ∂h

∂qj
j = 1, 2, . . . , n. (2.3)

There exists (locally) a one-form2 = 2µ dxµ such that� = d2 and which is defined up
to a gauge transformation2 7→ 2+df . The Hamiltonian equations of motion are obtained
from the variational principle for the action

S =
∫
γ

[2− h dt ] γ : [t1, t2] → M (2.4)

or in local coordinates

S =
∫ t2

t1

[2µ(x(t))ẋ
µ(t)− h(x(t))] dt. (2.5)

3. Geometry of quantized systems

The quantization procedure proposed in the next section involves additional structure
superimposed on the symplectic manifold(M,�). This is the so-calledgeneralized spin
structure or Spinc structure (see [9] p 369 and references therein) which combines in a
generally non-trivial way a (local) spin stucture over a Riemannian manifold and aU(1)
principal bundle structure.

Riemannian structure. We assume that there exists a Riemannian metric(·, ·) on the tangent
bundle TM. The associatedorthonormal frame bundleis denoted byO(M) = {r =
(x, e1, . . . , e2n)|ej form an orthonormal frame ofTxM}. The Riemannian structure defines
a unique Levi-Civita connection∇ onM which can be lifted to any bundle associated with
O(M).

Spin structure on Riemannian manifold. If M is an orientable Riemannian manifold, the
Clifford bundleC(M) is the bundle overM whose fibre atx ∈ M is the Clifford algebra
C(T ∗

x M) generated by the elementsc(v), v ∈ T ∗
x M. Herec(·) is a linear map satisfying the

anticommutation relations

c(v)c(u)+ c(u)c(v) = −2(u, v). (3.1)

The spinor representation of the Clifford algebra is constructed in the following way.
Let 4 denote ann-dimensional complex Hilbert space with the orthonormal basis{ξs =
e2s−1 − ie2s |1 6 s 6 n}. The spinor spaceS can be seen as a fermionic Fock space over
the Hilbert space4 generated by the orthonormal basis{ξs1 ∧ . . . ∧ ξsp ; 0 6 p 6 n} of
‘p-particle vectors’. The complexification of the Clifford algebraC(T ∗

x M) is isomorphic to
the algebraB(S) of linear operators onS by the following identification,

c(e2s−1) = as + a∗
s c(e2s) = i(a∗

s − as) (3.2)
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where as, a∗
s are fermionic annihilation and creation operators defined in terms of the

orthonormal basis{ξs}, and (e1, . . . , e2n) is an orthonormal frame ofT ∗
x M which can be

identified with(e1, . . . , e2n).
The spinor bundle inherits the unique Levi-Civita spinor connection∇S which in a local

orthonormal frame is given by

∇S
µ = ∂µ + 1

4ωµlkc(e
l)c(ek) (3.3)

where∇µek = ωµ
l
k
el , andωµlk = ωµ

l
k
.

Generalized spinor structure:Spinc structure. The construction presented above defines a
local spin bundle together with the local action of the Clifford bundle. In order to perform
our quantization procedure (see the next section) we need a globalSpinc bundle overM
which will be denoted bySc(M). There are topological obstructions to the existence of a
Spinc structure, namely the second Stiefel–Whitney class must be the mod2 reduction of
an integer class.

4. The quantization procedure

We propose the following quantization procedure for a classical system with a phase space
(M,�).

Definition 1. A classical system with a phase space(M,�) is quantizableif there exists
a Spinc structure overM and the covariant derivative on theSpinc bundleSc(M) exists
locally in the form∇S + (i/h̄)2 such that d2 = �. Any such structure defines a particular
quantization of(M,�).

For quantizable systems we now construct the basic ingredients of the quantum theory:
the Hilbert spaceH and the quantization map for observables.

Let L2(Sc(M)) denote the Hilbert space of square integrable sections of theSpinc

bundleSc(M). In local coordinates one can view the elements ofL2(Sc(M)) as spinor-
valued functions with the scalar product

〈9|8〉 =
∫
9†(x)8(x)

√
g dx 9,8 ∈ L2(Sc(M)). (4.1)

Definition 2. The Hilbert spaceH of the quantized system(M,�) corresponding to the
Spinc bundleSc(M) is defined as the kernel of the geometric Dirac operator acting on
L2(Sc(M))

D2 = c(dxµ)[∇S
µ + (i/h̄)2µ] (4.2)

i.e.

H = ker(D2) = {9;9 ∈ L2(Sc(M)),D29 = 0}. (4.3)

Definition 3. A quantum observablef̂ corresponding to a classical onef : M → R is
given by the followingquantization map,

f → f̂ = 5f5 (4.4)

where5 : L2(Sc(M)) → H is an orthogonal projection andf on the right-hand side of
equation (4.4) is treated as a multiplication operator onL2(Sc(M)).

The proposed quantization scheme generalizes and unifies two ideas: the polarization
formula in the geometric quantization approach [10, 11] and the Toeplitz quantization map
commonly employed in coherent state techniques [1, 12], and recently used in the context
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of non-commutative geometry [13]. Moreover, in section 6 we will construct a regularized
path integral formula for the unitary evolution operator exp(−(i/h̄)ĥt) extending the ideas
developed in [1, 6, 12, 14].

5. Atiyah–Singer index theorem and the non-triviality of quantization

The natural question arises whether the proposed quantization scheme leads to a non-trivial
Hilbert spaceH with an ‘appropriate’ dimension. For example, for a compact phase space
the dimension ofH should be roughly proportional to the ‘volume’ ofM. For non-compact
M the density of quantum states dN makes sense, and for the standard case ofM = R2n

with � = ∑
dqj ∧ dpj we have

dN =
n∏
k=1

dqk dpk
2πh̄

= [(2πh̄)nn!]−1
∧
n

�. (5.1)

In the case of a general but compact phase space manifoldM we can estimate the dimension
of H using the celebrated Atiyah–Singer index theorem [15] . The index of the Dirac
operatorD2 is defined as

index(D2) = dim(kerD+
2)− dim(kerD−

2) (5.2)

where

D2 =
(

0 D+
2

D−
2 0

)
and this grading of the Dirac operator comes from the natural grading of the spinor space
S = S+ ⊕

S−. Obviously

dimH > | index(D2)| (5.3)

and the Atiyah–Singer theorem gives

index(D2) =
∫
M

[ch(2/h̄) · Â(M)]top (5.4)

where the so-called̂A genus

Â(M) =
n∏
k=1

[
Rk/4π

sinh(Rk/4π)

]
(5.5)

is a differential form defined in terms of 2-formsRk which are obtained by block
diagonalizing the curvature

R = 1
2Rklγ λ dxγ ∧ dxλ = diag

(
0 Rk

−Rk 0

)
.

The Chern character of2/h̄ is given by

ch(2/h̄) = exp
�

2πh̄
. (5.6)

In equation (5.4) ‘top’ means that the highest rank(2n)-form in the power series expansion
is integrated. In the semiclassical limit ¯h → 0 the leading term is given by

index(D2) ≈ 1

(2πh̄)nn!

∫
M

∧
n

� (5.7)
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which clearly corresponds to equation (5.1) and assures the non-triviality of the quantization.
For non-compact manifolds the local index theorems [15] still make sense and one can obtain
the following estimate for the density of quantum states:

dN(x) > |ρ(x)| dx (5.8)

whereρ(x) dx1 ∧ . . . ∧ dxn = [ch(2/h̄) · Â(M)]top.

6. Regularized path integral

In [12] the idea of stochastically regularized coherent-state path integrals has been carefully
studied for the case ofM = R2n. Thereafter the formalism was generalized to examples
where (i)M is a homogeneous manifold for certain Lie groups [2], (ii)M is a Kähler
manifold [14], and (iii)M is a general two-dimensional Riemannian surface [6]. In the
following we modify and extend these ideas to our most general situation.

We begin with the construction of diffusions on Riemannian manifolds and their
horizontal lifts [16].

Let W(t) = (Wj (t); j = 1, 2, . . . ,2n) be a canonical normalized 2n-dimensional
Wiener process with expectationE . We consider a stochastic differential equation in the
Stratonovitch sense on the frame bundleO(M) which can be written in local coordinates
as

dxµ(t) = √
κe

µ

k (t) ◦ dWk(t)

deµk (t) = −0µλν(x(t))eνk (t) ◦ dxλ(t) (6.1)

with the initial conditionsx(0) = x, ek(0) = ek. Here0µλν are Christoffel symbols for the
Levi-Civita connection andκ > 0 is a diffusion constant. The solution of equations (6.1)
exists and defines a stochastic diffusion processr(κ)(t) = (xµ(t), e

µ

k (t), µ; k = 1, 2, . . . ,2n)
on O(M). We shall use a notation which explicitly shows theκ-dependence, i.e.
{xµ(t)} = x(t) ≡ x(κ)(t) etc.

One can easily check that the stochastic processx(t) alone is the canonical diffusion
process on a base manifoldM governed by the following diffusion equation forf (x; t) =
E(f (x(κ)(t)):

∂

∂t
f (x; t) = κ

2
1f (x; t) (6.2)

where1 denotes the Beltrami–Laplace operator.
There exists a canonical way of lifting the diffusion process (6.1) to fibre bundles

associated withO(M) such as a tensor bundle, a differential form bundle or a spinor
bundle. The last example is relevant for us. Let9(x) be a spinor field onM and by9[r]
we denote its representation in terms of the orthonormal framer = (x, ek). Namely, we
can identify9[r] with the coefficients of9(x) in the natural orthonormal basis inS, i.e.

9[r] ≡ {< ξw1 ∧ . . . ∧ ξwp ,9(x) >; 0 6 p 6 n}. (6.3)

Then defining9(x; t) in a local reference frame by

9[r; t ] = E9[r(κ)(t)] (6.4)

one may check that9(x; t) satisfies the following diffusion equation:

∂

∂t
9(x; t) = κ

2
1(B)9(x; t). (6.5)
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Here1(B) denotes thehorizontal Bochner Laplaceanfor spinors given in local coordinates
by

1(B) = gµν(x)(∇S
µ∇S

ν − 0λµν(x)∇S
λ ). (6.6)

In order to derive a path integral expression for the quantum propagator exp(−(i/h̄)ĥt) on
H we use first a quite general formula [12, 17] which in our case reads

exp

{
− i

h̄
ĥt

}
= 5 exp

{
− i

h̄
5h5t

}
5 = s − lim

κ→∞ exp

{[
κ

2
D2
2 − i

h̄
h

]
t

}
. (6.7)

The next step is to apply the Lichnerowicz theorem [15] which gives the following
decomposition

D2
2 = 1

(B)
2 + rM

4
+ 1

2h̄
c(�) (6.8)

where1(B)
2 is a twisted Bochner Laplacean obtained from (6.6) by replacing∇S with

∇S + (i/h̄)2, rM is a scalar curvature ofM, and in a coordinate system

c(�)[r] = i

2
�kl(r)c(ek)c(el) �kl(r) = �µν(x)e

µ

k (x)e
ν
l (x). (6.9)

Now using equations (6.5)–(6.9) we can apply the Feynman–Kac formula to get the
following regularized path integral expression:

(e−(i/h̄)ĥt9)[r] = lim
κ→∞ E

{
exp

[
i

h̄

∫
(2µ dxµ − h dt)

]
×T exp

[
κ

4

∫ t

0

(
1

2
rM(x

(κ)(s))+ 1

h̄
c(�)[r(κ)(s)]

)
ds

]
9[r(κ)(t)]

}
(6.10)

with T being the time ordering operator and9 ∈ H .
In formula (6.10) one can identify three basic elements:
(1) the Feynman probability amplitude e(i/h̄)S ;
(2) the geometricκ-dependent ‘corrections’ which involve both curvaturesrM and�;
(3) the regularizing diffusion process onO(M) which gives a mathematically rigorous

meaning to the path integral for all 0< κ < ∞.
In the general case formula (6.10) is rather complicated. In the next section we discuss

examples for which the structure ofH is much more explicit and the path integral (6.10)
can be dramatically simplified.

However, even in the general case one can replace the time-ordered matrix-valued term
in (6.10) by another regularized path integral with respect to auxiliary variables. Namely,
we have the following identities for the relevant matrix elements between two arbitrary
spinorsχ ′, χ ′′ treated as elements ofC2n

χ ′′†T exp

[
κ

4

∫ t

0

(
1

2
rM(x

(κ)(s))+ 1

h̄
c(�)[r(κ)(s)]

)
ds

]
χ ′

= lim
a→0b→0

(ab)−1[〈aχ ′′, t |bχ ′, 0〉 − 1] (6.11)

where

〈χ ′′, t |χ ′, 0〉 ≡ exp

{
− 1

2
χ ′′†χ ′′ − 1

2
χ ′†χ ′

+χ ′′†T exp

[
κ

4

∫ t

0

(
1

2
rM(x

(κ)(s))+ 1

h̄
c(�)[r(κ)(s)]

)
ds

]
χ ′

}
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= lim
ν→∞ e2nνt/2

∫
exp

{
1

2

∫ t

0
[χ †(s) dχ(s)− (dχ †(s))χ(s)]

+κ
4

∫ t

0

[
1

2
rM(x

(κ)(s))χ †(s)χ(s)+ 1

h̄
χ †(s)c(�)[r(κ)(s)]χ(s)

]
ds

}
dPν

W (χ)

(6.12)

andPν
W denotes Wiener measure onC2n concentrated on continuous pathsχ(s), 0 6 s 6 t ,

pinned so thatχ(0) = χ ′ andχ(t) = χ ′′, and with a transition probability given by∫
dPν

W (χ) = (2πνt)−2n exp

(
−|χ ′′ − χ ′|2

2νt

)
(6.13)

an expression that showsν to be the diffusion constant. We observe in addition that the
expression

〈χ ′′|χ ′〉 ≡ exp[− 1
2χ

′′†χ ′′ + χ ′′†χ ′ − 1
2χ

′†χ ′] (6.14)

which is just (6.12) fort ≡ 0, is a positive definite function, and according to the GNS
theorem, and as suggested by the notation, this expression may be interpreted as the inner
product of two vectors of the form

|χ〉 =
2n∏
l=1

|χl〉 |χl〉 = e− 1
2χ

∗
l χl

∞∑
nl=0

(nl !)
−1/2χ

nl
l |nl〉

〈nl|n′
l′ 〉 = δll′δnn′ . (6.15)

These are just the usual canonical coherent states, which admit a resolution of unity in the
form

1 =
∫

|χ〉〈χ |
2n∏
l=1

d Reχl d Imχl/π. (6.16)

Combining now formulae (6.10) with (6.11) and (6.12) we obtain a fully ‘scalarized’
regularized path integral expression for the quantum propagator.

7. Examples

In this section we briefly discuss two classes of phase spaces which have been treated
previously [6, 14] using an approach based on the prequantization Hilbert space which
consists of square integrable sections of theline bundleoverM instead of theSpinc bundle
used in the present paper. The results are slightly different but the difference vanishes in
the semiclassical limit.

Two-dimensional phase space (compare with [6]). Locally one can always find a coordinate
systemx1 = u, x2 = v such that the metric equals to

ds2 = e2w(u,v)(du2 + dv2). (7.1)

The natural choice of the orthonormal frame is

e1 = ew du e2 = ew dv (7.2)

and the spinor spaceS is spanned by the ‘spin down’ vector(e1 + ie2)/
√

2 ≡
[

0
1

]
and

the ‘spin up’ vector(e1 − ie2)/
√

2 ≡
[

1
0

]
. Hencec(e1) = σ1 and c(e2) = σ2 whereσk,
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k = 1, 2, 3 are Pauli matrices. The spin connectionωab = ωµ
a
b

dxµ can be easily calculated
using Cartan’s relations:ωab = −ωba , dea = −ωab ∧ eb . One obtains

ωu
1
2 = −ωu2

1 = ∂w

∂v
ωv

1
2 = −ωv2

1 = −∂w
∂u
. (7.3)

A straightforward calculation yields

D±
2 = e−w

[
(∂u ± i∂v)− i

h̄
(2′

u ± i2′
v

]
(7.4)

with

2′
u = 2u − h̄

2

∂w

∂v
2′
v = 2v + h̄

2

∂w

∂u
. (7.5)

Now the analysis is exactly the same as in the [6]. Depending on the sign of the ‘flux’∫
M
�, the Hilbert spaceH is spanned either by ‘spin down’ or ‘spin up’ functionsψ±, and

hence the inequality (5.8) becomes an equality. The only difference is that in all formulae2

is replaced by2′ given by equation (7.5). It leads to the cancellation of therM -dependent
term in the density of quantum states which now reads

dN = ± 1

2πh̄
�. (7.6)

In contrast to the quantizations based on the line bundle we obtain anexactcorrespondence
between the symplectic volume of the phase space and the dimension of the Hilbert space.
In particular, a classical spin with a phase spaceS2 with volume

∫
� = 2πh̄N is quantized

to the spin-j representation such that 2j+1 = N while ‘line bundle methods’ give 2j = N .

Kähler manifolds (compare with [14]). We assume that the phase space(M,�) is now a
Kähler manifold such that ifz = (z1, z2, . . . , zn) is a local chart of complex coordinates
andF(z, z̄) the (local) K̈ahler potential we have

2 = Im{∂F } � = d2 = i∂∂̄F (7.7)

along with the K̈ahler metric

gkl̄ = ∂2F

∂zk∂z̄l
. (7.8)

The complexification of the tangent bundle splits into two pieces, called the holomorphic
(T 1,0M) and antiholomorphic (T 0,1M) ones. It leads to an invariant decomposition
into annihilation and creation operatorsal̄ , a

∗
k associated with local orthonormal frames.

They annihilate a ‘vacuum’ (|0〉) or an ‘antivacuum’ (|1〉) vector in the spinor spaceS,
respectively.

The structure of the Dirac operator is now the following,

D2 = 1
2{c(dzk)∇̄F

k + c(dz̄k)∇F
k } (7.9)

with

∇̄F
k = ∂

∂z̄k
+ 1

2h̄

∂F

∂z̄k
+ 1

4
ωk̄

r̄
sara

∗
s . (7.10)

We have alsoc(dzk)|1〉 = 0, c(dz̄k)|0〉 = 0. Hence one expects that generically the solutions
of D29 = 0 are of the form9(x) = ψ(x)|0〉 with a complex functionψ satisfying(

∂

∂z̄k
+ 1

2h̄

∂F

∂z̄k
+ 1

4

∂

∂z̄k
ln g

)
ψ(z, z̄) = 0 (7.11)
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andg = g(z, z̄) = det[gµν ]. The solutions of (7.11) are (locally) of the form (compare with
[14])

ψ(z, z̄) = φ(z)e−(1/2h̄)F (z,z̄)[g(z, z̄)]−
1
4 . (7.12)

The global extensions of the solutions (7.12) must satisfy square integrability conditions
and topological constraints.

For both of the given examples of phase spaces, the Hilbert spaceH effectively consists
of scalar complex valued functions and therefore the path integral (6.10) can be ‘scalarized’
also without the need to introduce auxiliary variablesχ and interpreted directly in terms of
generalized coherent states as in [1, 6, 12, 14, 18].
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